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In this paper we consider spatiotemporal dynamical systems modeled by coupled, or uncoupled but
noise-driven, map lattices. In particular, we examine reports in the literature where it is found that the
distribution of certain mean-field quantities violates the law of large numbers (hence nonstatistical) but
not the central-limit theorem. Our results show that the origin of such nonstatistical behavior is due to
the statistical dependence between random variables at different lattice sites, thus rendering nonapplic-
able to such situations the law of large numbers and the central-limit theorem. Additional issues ex-
plored include the discussion of a special class of systems where nonstatistical behavior is not observed
and the physical motivation for considering uncoupled but noise-driven map lattices.

PACS number(s): 05.45.+b

Recently, it has been shown (see [1] and references
therein) that certain aspects of chaotic spatiotemporal
dynamical systems such as a turbulent fluid can be
modeled by coupled map lattices (CML’s) of the follow-
ing type:

xf;+1=Fi(ixr{}JL=1’€) , (1)
where x, denotes the value of the continuous variable x '
at discrete time s, with i =1,2, ..., L labeling the site in
the lattice, and € is used here to give a general measure of
the coupling strength. If we take the coupling to be mean

field, we are led to the study of a special class of CML, an
example of which is

x,’,+1=(1—e)f(x,‘,)+% S f(xi), %)
j=1

with f(x) prescribing the local dynamics at each lattice
site. We assume in the absence of coupling (e=0) that
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each individual map exhibits chaotic dynamics.

A different but related class of spatiotemporal model
systems being considered [2] is the following noise-driven
uncoupled map lattice (UCML):

Xy 11 =F(xy,a,), @)

where a/ can be a random variable influencing the dy-
namics at site i and F(x!,0)=f(x.). This type of model
may be motivated in part by considering a hypothetical
physical situation in which a system consisting of L iden-
tical chaotic units is embedded in a noisy environment.
If the coupling between units is sufficiently weak, it can
be neglected in the first approximation. There are four
different cases regarding the nature of the environment.
In case (1), a,’; =g, meaning that the background is homo-
geneous and constant. Case (2) concerns the possibility
that the environment varies randomly in time but is
correlated in space. That is, a, =&, where &, is a ran-
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dom variable of zero mean with (&) £/)70. The symbol
( ) is used to denote ensemble average. Specifically, one
may consider a} =¢£,, corresponding to a random back-
ground that is homogeneous in space. In this paper we
suppose that the random variables representing the back-
ground at different lattice sites are all uncorrelated in
time (white noise). The third case differs from the second
by having a! =£'. Namely, the background is nonhomo-
geneous in space but remains a constant of time. The
evolution of different units in this case follows different
laws but is deterministic once the variable £’ is assigned a
specific value. Case (4) arises when the environment is
random in time and uncorrelated in space. That is,
al =&, where (£,&, )=0 for n¥*m and i#j. Clearly,
case (2) depicts the situation which is most likely to occur
in practice. In particular, the specific example of a} =§,
can be regarded as a model of Eq. (2), provided the dy-
namics of the latter is sufficiently chaotic. For simplicity,
we may henceforth use case (i), i =1,2, 3,4, to refer to the
four different situations associated with Eq. (3).

From the viewpoint of physical measurement, a quanti-
ty of interest for both Egs. (2) and (3) is the distribution
of some mean-field variables, corresponding possibly to
observable quantities such as

1 & i
h_fi§1f(x ) ) (4)

and their statistical characteristics (e.g., mean and vari-
ance), where f(x) is the function defining the local dy-
namics. It is reported that the histogram constructed
from the temporal realizations of 4, denoted h,, appears
to be normally distributed, but for Eq. (2) and case (2) of
Eq. (3), the variance of A,

32=((h—(h))?), (5

exhibits “nonstatistical” behavior [2—8]. Here (4 ) is the
mean of h. Specifically, if InZ? is plotted against InL, as
schematically illustrated in Fig. 1, one observes a straight
line with a slope of —1 for cases (1), (3), and (4) (statisti-
cal), but a curve approaching a constant for large enough
L for case (2) and Eq. (2) (nonstatistical). The purpose of
this paper is to present results addressing the origin of
this observation, as well as discuss other related issues.

case (2) and Eq. 2

InZ

na p— — — — — —

cases (1),(3)and (4)

In L

FIG. 1. Schematic illustration of In3? as a function of InL for
four different cases of Eq. (3) and for Eq. (2).
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The mean value of 4 is defined as
(h)—-—z(f(x . (6)
l =1

In actual calculations the ensemble average (or the aver-
age over invariant measures for deterministic variables)
may be replaced by the time average. From Eq. (5), and
using Egs. (4) and (6), we have

|

=—1—,§ (LF )= Flxin) )
L* <

L& L g |
T U=t )>1] )

—22([f(xi)—<f(xi))][f(xf)—(f(xj))])
ol
L
=530t 5 3ay,
i=1 ij

i#j

where o? is the variance of the random variable f(x i,
and a;; is the covariance between f (x ) and f(x/). Here
we use the term random variable to refer to the dynami-

cal variable at a given lattice site regardless of whether
the local dynamics is deterministic or random. For cases

(1), (2), and (4) of Eq. (3) and Eq. (2), since o?=0? and
a;;=a are independent of the lattice sites, we obtain
L(L—1 )
s2= 2 LE=D)
L L2 ’
2
sz—+a : (7)

The second step is warranted for large L. For case (3),
since every unit evolves differently, o? is generally site
dependent. When L 1s large, however we can use the ap-
proximation St 0?~L&? with > the mean value of
a?. In what follows, we show that, for this case as well as
for cases (1) and (4), the covariance between random vari-
ables at different sites is zero, resulting from their statisti-
cal independence, thus explaining the observed linear
behavior in Fig. 1. We further show that, except for a
special class of systems, which includes the much-studied
tent map, the covariance a is generally not zero for case
(2) and for Eq. (2), and is the observed asymptotic value
approached by =2 in the limit L — co.

We say two random variables are statistically indepen-
dent if their joint probability distribution function is the
product of the two individual distribution functions,
which, in the case of deterministic variables [cases (1) and
(3) of Egs. (3) and (2)], refer to the invariant measure on
the attractor. It suffices to consider the situation of two
uncoupled random maps expressed as

Up+1— G(un)gn ’ (8)
Un+1 H(Un’nn) ’ 9)

with &, and 7, two random variables. Here we allow the
two maps to be different. The joint probability distribu-
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tion function of u and v at time n, P,(u,v), is related to
that at time » — 1 via

P,(1,0)= [8(u—G(u’,£)8(v —H (v
XWe,(§,m)du'dv'dEdn

)P, —(u',v’)

where W, (£,7) is the joint probability distribution func-
tion of & and 7, and 8( ) denotes the standard Dirac &
function. In the limit n — o one obtains the stationary
distribution P(u,v) as the fixed point of the above func-
tional iteration

P(u,v)=f8(u —G(u',£))8(v —H (v',n))P(u’,v")
XWe,(&,m)du'dv'dEdny . (10)

If the random variables £ and 7 are statistically indepen-
dent, then their joint distribution can be written as
Wen(8,m)=W(E)W (7). Note that, in addition to case
(4), cases (1) and (3) are also included in this category by
writing W(§) and W, () as & functions. Since the maps
are uncoupled, a solution of the form P(u,v)=P,(u)P,(v)
satisfies Eq. (10), where P,(u) and P,(v) are stationary
distributions for u and v, respectively. Assuming that for
Eq. (10) there exists a unique solution, the covariance be-
tween functions of u and that of v is zero for all three
cases. This leads to =0 in Eq. (7), and hence the ob-
served linear behavior in Fig. 1.

If £ and 7 are not independent random variables, that
is, (£n)70, their joint probability distribution function
cannot be written as the product of the two individual
distributions. Consequently, a solution of the type
P(u,v)=P,(u)P,(v) generally does not satisfy Eq. (10),
resulting in finite covariance between variables which are
functions of u and variables which are functions of v.
This is what underlies the observed saturation of 3? for
case (2) and for Eq. (2) for the examples considered in the
literature. The saturated value of =? for case (2) and for
Eq. (2) is a from Eq. (7). We note that in these cases,
since the sampling at site / depends on that at site j, both
the central-limit theorem and the law of large numbers
do not apply. An interesting physical implication of the
above results is that one can learn about the correlation
properties between the subunits in the system by examin-
ing the behavior of the variance of certain mean-field
variables as a function of the system size.

It is found that for systems such as the tent map one
observes linear behavior in the plots of InZ? versus InL
for Eq. (2) [8] and for all the cases of Eq. (3). We explain
the origin of this phenomenon below. We also point out
that the same phenomenon should occur for a wider class
of systems.

For concreteness, consider an example map defined on
the unit interval shown in Fig. 2. The slopes in this case
satisfy the relationship:

Assuming the noise is additive, i.e.,
u, 1=g8(u,)+§&,modl =G(u,,§,),

where g (u) is the function shown in the figure, by identi-
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b g(u)

o | u

FIG. 2. A piecewise stretching map defined on the unit cir-
cle.

fying 1 with O (mod 1), the random dynamics can be re-
garded as taking place on a circle of unit length. The sta-
tionary distribution function for u obeys

P,(w)= [8(u—G(u",ENP,(u"\W(E)du'dE . (12)

The integration over u' can be carried out, and the result
is

Pu(u)=f Fulu

where u; and u, denote the two solutions of u’ to the
equation ¥ =g (u’')+&mod 1. It is clear that P,(u)=1,
namely the uniform distribution, is a solution to the
above equation, by virtue of Eq. (11). Again we assume
that this is the only solution to Eq. (12). This assumption
is reasonable, given the uniform-expanding nature of the
map, and is supported by numerical simulations.

The stationary joint probability distribution function of
u and v for the following pair of maps,

W§(§)d§+ f Wg(g)dg ,

u,+1—8u,)+§&mod 1 =G(u,,t,), (13)
Vy+1=8 (0, ) +7n,mod 1 =G(v,,7,), (14)
satisfies

P(u,v)= [ 8(u —G(
X Wy (&,n)du'dv'dEd .

u',€))8(v —Gv',m))P(u',v’)

Performing the integration over 4’ and v’ we obtain

P(ul,vl)

P(u,v)= [ g Wenl&mdsdn
P(uq,v,)
+J‘#W§n(§m)d§d’ﬂ

u2, 1 )
+ [ W& mdgdn

P(uz, 2
+ [~ W& mdEdy

with u,u, and v,,v, solutions of #’ and v’ to the equa-
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tions u =g(u')+£&mod 1 and v=g(v’')+7ymod 1, re-
spectively. Evidently, P(u,v)=1 is a solution to the
above integral equation. Since this function P(u,v)=1
can be viewed as the product of P,(u)=1 and P,(v)=1,
the variables u and v are statistically independent, regard-
less of whether £ and 7 are independent or not. The same
argument and conclusion can be applied to maps defined
by arbitrary piecewise linear functions on circles, provid-
ed the slope of each piece 3; satisfies
X 1

— = s

k§1 IBk |

where X is the total number of pieces of the linear func-
tion. This general class of maps includes the tent map as
a special case. If the noise is parametric, however, for the
same class of maps, the covariance between random vari-
ables at different sites is usually finite, if the noise is
correlated in space. We have confirmed this in our nu-
merical experiments.

As mentioned earlier, case (2) of Eq. (3) can be thought
of as a model for Eq. (2), if the latter is sufficiently chaot-
ic. Discussions above support this hypothesis insofar as
the statistical properties of certain mean-field variables
are concerned. On the other hand, regarding other as-
pects of the same variables, these two classes of situations
may differ drastically from one another, giving rise to di-
agnostic signatures in experiments. For instance, it is re-
ported [5,6] that for the case of Eq. (2), the saturated
value a of =% scales with the strength of coupling € as
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a~e"

where M is the dimension of the local dynamics (M =1
for the models we consider in this paper). No such scal-
ing is observed for case (2) of Eq. (3). Furthermore, the
time series {4, ] is shown to exhibit interesting coherence
behavior characterized by peaks in its power spectrum
for the case of Eq. (2). Again no such coherence is ap-
parent in the spectrum of a similar time series generated
by case (2) of Eq. (3). It is further revealed [8] that the
spectral peaks are related to the circular motion of the
data points reconstructed in a two-dimensional phase
space using delay coordinates. The origin of this
coherent behavior remains to be understood.

In summary, we stress that spatially correlated random
variables can induce correlation among random dynami-
cal variables at different lattice sites. This underlies the
nonapplicability to such situations of the law of large
numbers and the central-limit theorem. The covariance
between random variables at two different sites gives rise
to the observed saturation value approached by the func-
tion of In2? versus InL.

Note added in proof. Recently, the following relevant
comment appeared: A. S. Pikovsky, Phys. Rev. Lett. 71,
653 (1993).
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